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ABSTRACT

Existing multi-modal subspace clustering methods, aiming to ex-
ploit the correlation information between different modalities, have
achieved promising preliminary results. However, these methods
might be incapable of handling real problems with complex het-
erogeneous structures between different modalities, since the large
heterogeneous structure makes it difficult to directly learn a discrim-
inative shared self-representation for multi-modal clustering. To
tackle this problem, in this paper, we propose a deep Self-supervised
t-SNE method (StSNE) for multi-modal subspace clustering, which
learns soft label features by multi-modal encoders and utilizes the
common label feature to supervise soft label feature of each modal
by adversarial training and reconstruction networks. Specifically,
the proposed StSNE consists of four components: 1) multi-modal
convolutional encoders; 2) a self-supervised t-SNE module; 3) a
self-expressive layer; 4) multi-modal convolutional decoders. Multi-
modal data are fed to encoders to obtain soft label features, for
which the self-supervised t-SNE module is added to make full use
of the label information among different modalities. Simultane-
ously, the latent representations given by encoders are constrained
by a self-expressive layer to capture the hierarchical information
of each modal, followed by decoders reconstructing the encoded
features to preserve the structure of the original data. Experimental
results on several public datasets demonstrate the superior clus-
tering performance of the proposed method over state-of-the-art
methods.
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• Computing methodologies → Cluster analysis; Learning
latent representations.
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1 INTRODUCTION

Clustering analysis is a fundamental task in a wide range of fields,
such as machine learning, pattern recognition, computer vision,
and data mining [19]. There are numerous works proposed on this
topic, among which, multi-modal clustering [35] is of particular in-
terest due to the ubiquitous multi-modal data existing in real-world
applications. Multi-modal data describe the objects’ characteristics
from distinct perspectives. For example, an image could be charac-
terized by various descriptors, such as color, depth, structure, etc. In
the past few years, multi-modal clustering (MMC) methods [6, 12]
have been developed rapidly by exploring the complementary in-
formation among multiple modalities. Existing MMC methods can
be roughly divided into two categories: traditional methods and
deep methods. The traditional methods such as the non-negative
matrix factorization (NMF) based methods [14, 20], multi-kernel
learning (MKL) [15, 37] methods, subspace methods [7, 23], and the
graph-based methods [21, 22, 29] mainly adopt shallow and linear
embedding functions to reveal the intrinsic structure of data. How-
ever, they are difficult to depict the structure of high-dimensional
nonlinear data. In addition, they may suffer from the curse of di-
mensionality.

To address these problems, deep learning methods are devel-
oped to deal with the multi-modal clustering problem. For example,
Andrew et al. [2] proposed a deep canonical correlation analysis
(DCCA) method to learn complex nonlinear transformations of
two-modal data such that the resulting representations are highly
linearly correlated. Abavisani and Patel [1] employed convolutional
neural networks for unsupervised multi-modal subspace clustering
(DMSC). Although these methods have achieved promising results,
they are still limited by the complex heterogeneous information
between different modalities. To name a few, two challenges could
be raised by multi-modal subspace clustering:

• How to consider the distribution of the inter-modal data and
the intra-modal data simultaneously to learn a representative
shared subspace to improve clustering accuracy?
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• How to guarantee that the features extracted from multi-
ple modalities contain more discriminative information and
benefit the performance of the clustering task?

To address the aforementioned challenges, as shown in Figure 1,
we propose a novel Self-supervised t-SNE method (StSNE) for multi-
modal subspace clustering to improve multi-modal clustering per-
formance. The proposed method consists of four parts: multi-modal
convolutional encoders, a self-supervised t-SNE module, a self-
expressive layer, and multi-modal convolutional decoders. The
multi-modal convolutional encoders map each modality’s high-
dimensional data to a low-dimensional subspace to obtain latent
representations, and meanwhile, the self-supervised t-SNE mod-
ule constrains soft label features with a boosted consensus cluster
distribution further. On the derived soft labels, the self-expressive
layer is employed to learn a common soft label feature shared by all
modalities. Thus, the intrinsic information from intra-modal and
inter-modal can be well revealed. Finally, we utilize multi-modal
convolutional decoders to reconstruct the original data, which en-
sures the representation produced by the encoder can well reflect
the characteristics of the original data. The main contributions of
our method are summarized as:

• We propose a novel self-supervised t-SNE method (StSNE)
for multi-modal subspace clustering by developing a self-
expression layer to consider both inter-modal and intra-
modal distributions.

• The self-supervised t-SNE module makes soft label features
of each modality similar to each other, which helps achieve
a more compact clustering structure and thus improves the
clustering performance.

• A deep convolutional encoder-decoder architecture is de-
signed and developed to implement multi-modal data recon-
struction, where the encoded features enable us to capture
the overall structure distribution of original data.

• We conduct extensive experiments and comparisons with
state-of-the-art works to demonstrate the effectiveness of
the proposed method.

2 RELATEDWORK

Multi-modal clustering aims to extract a common representation for
multiple modalities. One representative method is based on canoni-
cal correlation analysis (CCA) [2, 4, 26]. It makes two-modal data
similar to each other by maximizing the correlation of subspaces
of two modalities, which can learn a consistent representation
for multi-modal data. Following CCA, Andrew et al. [2] proposed
a DNN extension based on CCA (DCCA) to learn complex non-
linear transformations of two-modal data such that the resulting
representations are highly linearly correlated. Inspired by CCA
and reconstruction-based objectives, the deep canonically corre-
lated auto-encoder (DCCAE) was developed in [26]. Different from
DCCA, DCCAE optimizes the combination of canonical correlation
between the learned “bottleneck" representation and the recon-
struction errors of the auto-encoders. However, all these methods
are limited to two-modal data. To overcome this challenge, Ben-
ton et al. [4] presented Deep Generalized Canonical Correlation
Analysis (DGCCA), a method to learn nonlinear transformations

of arbitrarily multiple modalities of data, such that the resulting
transformations are maximally informative of each other.

Apart from the CCA-based methods, a variety of multi-modal
embedding clustering methods have been proposed based on auto-
encoders [13, 24, 25]. For example, Abavisani and Patel [1] employed
convolutional neural networks for unsupervised multi-modal sub-
space clustering (DMSC). Though this method achieves promising
results, it is not straightforward to apply DMSC on large datasets
due to the self-expression constraint. For another example, Lin et
al. [13] proposed a novel joint framework for deep multi-modal
clustering (DMJC), where multiple deep embedded features, multi-
modal fusion mechanism, and clustering assignments are learned
simultaneously. Li et al. [12] developed deep multi-view clustering
via generative adversarial networks (GAN).

Though the aforementioned methods have achieved promising
results, they ignore the distribution consistency of the inter-modal
data. In addition, due to the complex heterogeneous information
between different modalities, the shared representation directly
recovered from each modal is difficult to explore the intrinsic clus-
tering feature.

3 SELF-SUPERVISED T-SNE FOR
MULTI-MODAL SUBSPACE CLUSTERING

3.1 Motivations

To address the limitation of existing multi-modal subspace cluster-
ing, we focus on the distribution consistency of the inter-modal
data. If the distribution of each modal is closed to an “ideal” con-
sensus distribution that has a better clustering structure, the in-
trinsic clustering feature can be well explored. It is well known
that t-distributed stochastic neighbor embedding (t-SNE) [17] is an
effective technique to encourage a compact data structure in the
low-dimensional embedding space. Motivated by it, we utilize t-
SNE to model the consensus distribution across different modalities
and push each modal towards the consensus one. As a result, the
correlation of different modalities can be well exploited.

Additionally, the structures embedded in each modal are also
important for clustering. To this end, we utilize self-representation
learning to recover a common representation shared by all the
modalities. Considering the possible noise and high-dimensionality
of the original multi-modal data, we utilize convolutional encoders
to extract soft label features of each modal. Correspondingly, con-
volutional decoders are utilized to make the obtained latent repre-
sentation well preserve the intrinsic structure of original data.

3.2 The Framework of StSNE

The framework of the proposed StSNE is shown in Fig. 1, which
consists of multi-modal convolutional encoders, a self-supervised
t-SNE module, a consistent self-expressive layer, and multi-modal
convolutional decoders. Our model aims to partition a set of 𝑁
data points into 𝑘 clusters by using multi-modal features {X(𝑚) },

where X(𝑚) = {𝑥
(𝑚)
1 , . . . , 𝑥

(𝑚)
𝑁 } denotes the original features of

the𝑚-th modality, 1 ≤ 𝑚 ≤ 𝑀 , and 𝑀 represents the number of

modalities. In each X(𝑚) , 𝑥 (𝑚)
𝑖 denotes the 𝑖-th sample, 1 ≤ 𝑖 ≤ 𝑁 .

We use 𝑑𝑚 to denote the feature dimension of the samples in the
𝑚-th modality.
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Figure 1: Network structure diagram of the ourMethod, which consists ofmulti-modal convolutional encoders, a self-supervised

t-SNE module, a consistent self-expressive layer and multi-modal convolutional decoders.

3.2.1 Multi-modal Convolutional Encoders. For the 𝑚-th modal
data X(𝑚) , the multi-modal convolutional encoder aims to learn a
non-linear mapping ℎ(X(𝑚) ;𝜃𝑚) which can transform the original

features to a soft label feature Z𝑚 = {𝑧
(𝑚)
1 , . . . , 𝑧

(𝑚)
𝑁 }(Z𝑚 ∈ R𝑘×𝑁 ),

where 𝑘 is the output dimension of the convolutional encoder,
which is also the number of clusters. Specifically, it maps the 𝑑𝑚-

dimensional input data𝑥 (𝑚)
𝑖 to a𝑘-dimensional representation 𝑧 (𝑚)

𝑖 .

This mapping could be obtained by ℎ(X(𝑚) , 𝜃𝑚) = Z𝑚 , where ℎ(·)
refers to the encoder mapping function parameterized by 𝜃𝑚 .

3.2.2 Self-supervised t-SNE Module. After multi-modal convolu-
tional encoders, we derive 𝑀 soft label features Z𝑚 . In order to
make each modal’s soft label feature as close as possible, we con-
struct a common soft label feature and make each modal’s soft
label feature more similar to the common soft label feature distri-
bution. Therefore, we obtain the common soft label feature Z by
Z = 1

𝑀

∑𝑀
𝑚=1 Z𝑚 .

We obtain the common label soft feature distribution Q with
the t-student distribution of t-SNE [17] between the common soft
label feature Z and the common cluster centroids {𝜇 𝑗 }𝑘𝑗=1. In our
model, we use mean square error and adversarial training to make
each modal’s soft label feature close to the common representation
distribution. This allows the latent representation of each modality
to be closer to the same and to make the latent layer features
belonging to the same clusters more similar.

Based on the above analysis, the common cluster centroids
{𝜇 𝑗 }

𝑘
𝑗=1 and eachmodal discriminatorD𝑚 constitute a self-supervised

t-SNE module. Each discriminator D𝑚 consists of 3 fully connected

layers, and 𝑧
(𝑚)
𝑖 ∼ 𝑃 (Z𝑚) is a generated sample and 𝑞𝑖 ∼ 𝑃 (Q)

is a real instance, where the notation 𝑥 ∼ 𝑃 (X) represent 𝑥 is a
sample of X. D𝑚 feeds back the result to the generator network
and updates the parameters of the generator. By this means, the
discriminator works as a regularizer to guide the training of our
multi-modal encoders, which enhances the robustness of embed-
ding representation and avoids the over-fitting issue effectively.

3.2.3 Consistent Self-expressive Layer. Some self-expressiveness
based methods [1, 9] have attracted much attention, which aims to
express the data point as a linear combination of other points in
the same subspace. We obtain the soft label feature Z𝑚 from multi-
modal convolutional encoders and send them to the self-expression
layer. In the same space, one data point can be represented linearly
by other data points. Then we can get the Z𝑚S = Z𝑚 , where S is the
self-representation coefficient matrix.𝑀 modalities share a same
self-expression coefficient matrix. In order to prevent the trivial
solution S = I, we constraint 𝑑𝑖𝑎𝑔(S) = 0. Then we can leverage the
matrix S to construct the affinity matrix by the following equation
C = 1

2 ( |S| + |S𝑇 |), Finally, we apply C for spectral clustering [18].

3.2.4 Multi-modal Convolutional Decoders. To learn a better soft
label feature Z𝑚 , we add multi-modal convolutional decoders. It has
an opposite architecture to the multi-modal convolutional encoder
and could reconstruct the 𝑚-th modal data from the soft label
feature Z𝑚 . Denote X̂(𝑚) = 𝑔 (Z𝑚S, 𝛿𝑚), where X̂(𝑚) represents
the reconstructed sample matrix of the𝑚-th modal, 𝑔(·) refers to
decoder mapping function parameterized by 𝛿𝑚 .
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3.3 Loss Function Analysis

The total loss function of our model is defined as follows:

𝐿𝑜𝑠𝑠 = min
𝜃,𝜇,S,𝛿

max
D𝑚

𝐿𝐴𝑇 + 𝜆1𝐿𝑆𝑒 + 𝜆2𝐿𝑅𝑒 , (1)

which is composed of three parts: the Self-supervised t-SNE loss
𝐿𝐴𝑇 , the Self-expression loss 𝐿𝑆𝑒 , and the Reconstruction loss 𝐿𝑅𝑒 .
𝜆1 and 𝜆2 are two parameters to balance the impact of the Self-
expression loss and the Reconstruction loss. 𝜃 are the encoder pa-
rameters, 𝛿 are the decoder parameters, S is the self-representation
coefficient matrix, 𝜇 are the common cluster centroids and D𝑚 is
𝑚-th discriminator. The common clustering centroids 𝜇 are initial-
ized by K-means on the common soft label feature Z and updated
by backpropagating gradients along with the network training.

3.3.1 Self-supervised t-SNE Loss. The t-distributed stochastic neigh-
bor embedding (t-SNE) [17] is a nonlinear dimensionality reduction
algorithm for exploring high-dimensional data. It maps multidimen-
sional data to two or more dimensions suitable for human observa-
tion. The main idea is to use conditional probability to represent
the similarity of the distances of the high-dimensional distribution
points, and the points of the low-dimensional distribution are also
represented. As long as the conditional probabilities of the two
are very close, it means that the points of the high-dimensional
distribution have been mapped to the low-dimensional distribution.
We will draw on the idea of t-SNE to constrain the distribution of
each modal soft label feature to capture the similarity of the data
between modals.

The self-supervised t-SNE loss function is defined as follows:

𝐿𝐴𝑇 = min
𝜃,𝜇

max
D𝑚

𝐿𝑇 + 𝜆3𝐿𝐴, (2)

consisting of the t-SNE loss 𝐿𝑇 and the adversarial loss 𝐿𝐴 . 𝜆3 is a
balancing parameter between 𝐿𝑇 and 𝐿𝐴 .

t-SNE loss: Given the initial cluster centroids {𝜇 𝑗 }𝑘𝑗=1, we use
the Student’s t-distribution in t-SNE [17] as a kernel to measure
the similarity between common latent representation point 𝑧𝑖 and
centroid 𝜇 𝑗 :

𝑞𝑖 𝑗 =
(1 + ||𝑧𝑖 − 𝜇 𝑗 | |

2)
−1

∑
𝑗 ′ (1 + ||𝑧𝑖 − 𝜇 𝑗 ′ | |2)

−1 , (3)

where 𝑞𝑖 𝑗 is interpreted as the probability of assigning sample 𝑖 to
cluster 𝑗 , i.e., soft assignment. In our model, we use mean square
error and adversarial training to make each modal soft label feature
close to the common soft label feature distribution. Hence, our
t-SNE loss function is given by

𝐿𝑇 = min
𝜃,𝜇

𝑀∑

𝑚=1
| |Z𝑚 − Q| |2𝐹 , (4)

where | | · | |𝐹 denotes the matrix Frobenius norm. We constrain the
soft label feature Z𝑚 to the common soft label feature distribution
Q by the t-SNE loss 𝐿𝑇 , and, ideally, each view should exhibit the
same cluster structure. However, since individually using the MSE
implementation of 𝐿𝑇 leverages one dimensional, element-wise
error model and ignores the relationship between them. Hence, we
further use an adversarial loss [12] to model the cluster distribu-
tions.

Adversarial loss: The adversarial loss function is given by

𝐿𝐴 = min
𝜃,𝜇

max
D𝑚

𝑀∑

𝑚=1
(E𝑞∼𝑃 (Q) [𝑙𝑜𝑔D𝑚 (𝑞)]

+E𝑧𝑚∼𝑃 (Z𝑚) [𝑙𝑜𝑔(1 − D𝑚 (𝑧𝑚))])

, (5)

where the notation E represents E𝑥∼𝑃 (𝑋 ) [𝑓 (𝑥)] =
1
𝑁

∑𝑁
𝑖=1 𝑓 (𝑥

𝑖 ),
and 𝑁 denotes the number of samples. We treat 𝑃 (Q) as “real"
samples since Q enjoys a sharper and more consensus clustering
distribution than each single view. Thus, we could adopt adversarial
training to push each view’s soft labels Z𝑚 towards view-consensus.

We update the multi-modal convolutional encoders 𝜃 and the
common cluster centroids 𝜇, as well as the 𝑀 discriminator net-
works Dm by optimizing the self-supervised t-SNE loss 𝐿𝐴𝑇 .

3.3.2 Self-expression Loss. In the self-expression layer, to better
perform the self-expression property and acquire a better self-
expression coefficient matrix S, we minimize the self-expression
loss function:

𝐿𝑆𝑒 = min
𝜃,S

| |S| |1 +
𝑀∑

𝑚=1
| |Z𝑚 − Z𝑚S| |2𝐹 ,

𝑠 .𝑡 ., 𝑑𝑖𝑎𝑔(S) = 0.
(6)

where | | · | |1 denotes the matrix 𝐿1 norm, and | |S| |1 is the regular loss
function for the coefficient matrix S. We update the multi-modal
convolutional encoder and the consistent self-expressive layer by
minimizing the self-expression loss.

3.3.3 Reconstruction Loss. In order to guarantee the effectiveness
of the representation processed by the multi-modal convolutional
encoder and the self-expression layer, we add the multi-modal con-
volutional decoder to reconstruct data. The soft label feature Z𝑚S

from the self-expression layer are fed to the multi-modal convolu-
tional decoder and we can acquire the reconstruct data. Minimize
errors between reconstructed and original data to optimize the
network. Therefore, the reconstruction loss for the network is

𝐿Re = min
𝜃,S,𝛿

𝑀∑

𝑚=1
| |X(𝑚) − X̂(𝑚) | |2𝐹 . (7)

The reconstruction loss guarantees the reliability of the latent
representation by updating the multi-modal convolutional encoder,
the consistent self-expressive layer, and the multi-modal convolu-
tional decoder.

3.4 Model Training

In the proposed model, we use two steps to train the model and
optimize the network parameters.

Step. 1: We pre-train the network using Eq (7). We send the
multi-modal data X(𝑚) to the multi-modal convolutional encoder
and obtain the reconstruction data from the multi-modal convo-
lutional decoder. In the pre-training step, we set the learning-rate
to 0.001 and minimize the error between the original data and the
reconstruction data to optimize the network and update encoder
parameter 𝜃 and decoder parameter 𝛿 , where we use mean squared
error (MSE) [27] to optimize the objective function.

Step. 2: We train the entire network using Eq (1). We use the
multi-modal convolutional encoder parameter 𝜃 and the multi-
modal convolutional decoder parameter 𝛿 from the first step train-
ing to train the entire network, i.e., minimizing the total loss to
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Table 1: Statistics of four multi-modal real-world datasets.

Note that the training and testing images in each dataset are

jointly utilized for clustering.

Dataset #Sample #Class #Modality #Size

Fashion
70000 10 2 28 × 28 × 1

MNIST
COIL20 1440 20 2 128×128× 1
YTF 10000 41 3 55 × 55 × 3
FRGC 2462 20 3 32 × 32 × 3

update model parameters 𝜃, 𝛿, 𝜇 and the coefficient matrix S. We
obtain the shared coefficient matrix S from self-expression layer,

and calculate the affinity matrix C =
1

2
( |S| + |S|T). Finally, we use

the affinity matrix C and spectral clustering method to complete
data clustering.

4 EXPERIMENTS

In this section, we first give the basic settings in our experiments
and then provide the clustering performance on four real-world
datasets as well as some experimental analyses.

4.1 Experimental Settings

4.1.1 Datasets. We construct four new multi-modal datasets by
generating auxiliary modalities upon the original images, each of
which is described as follows.

• Fashion-MNIST dataset: Fashion-MNIST [30] is a widely-
used benchmark dataset consisting of 70, 000 fashion product
images with 28 × 28 pixels. In our experiment, we use the
original image features as the first mode and the edge fea-
tures of the extracted fashion product as the second mode.

• COIL20 dataset: COIL20 [11] collects 1440 128× 128 grayscale
object images of 20 categories viewed from varying angles.
Like the Fashion-MNIST dataset, we use the original picture
feature as the first mode and the edge feature of the extracted
object as the second mode.

• Youtube-Face (YTF) dataset: Following [34], we choose the
first 41 subjects of YTF dataset. Faces inside images are first
cropped and then resized to 55 by 55 sizes [28]. In this paper,
we implement its original RGB picture as the first mode, the
gray picture converted from the original RGB picture as the
second mode, and the extracted edge feature as the third
mode.

• FRGC dataset: Using 20 random selected subjects in [34]
from the original dataset, we collect 2,462 face images. Simi-
larly, we first crop the face regions and resize them into 32
by 32 images. We treat the dataset in the same way as the
YTF dataset.

The examples and experimental statistics of fourmulti-modal datasets
are shown in Figure 2 and Table 1. Notably, both the training and
testing images in each dataset are utilized for unsupervised cluster-
ing.

4.1.2 Comparison Algorithms. We choose two single-modal clus-
tering methods: K-means clustering [8] and Deep Embedding
Clustering (DEC) [32]; four traditional multi-view clustering meth-
ods: Robust Multi-View K-Means Clustering (RMKMC) [5], Binary
Multi-View Clustering (BMVC) [36], Multiview clustering by joint
latent representation and similarity learning(LALMVC) [31], and
Consistent and specificmulti-view subspace clustering(CSMSC) [16];
two deep two-modal clustering methods: Deep Canonical Cor-
relation Analysis (DCCA) [2] and Deep Canonically Correlated
Auto-Encoders (DCCAE) [26]; three deep multi-modal cluster-
ing methods: Deep Generalized Canonical Correlation Analysis
(DGCCA) [4], Joint framework for Deep Multi-view Clustering
(DMJC) [13] (we adopt the second scheme DMJC-T as the baseline),
and Deep Multimodal Subspace Clustering (DMSC) [1].

4.1.3 ImplementationDetails. We implement ourmethod and other
non-linear methods with the public toolbox of PyTorch. We run
all the experiments on the platform of Ubuntu Linux 16.04 with
NVIDIA Titan Xp Graphics Processing Units (GPUs) and 64 GB
memory size. We select Adam [3] optimizer with default parameter
setting to train our model and fix the learning rate at 0.001. We
conduct 2000 epochs for the first step train and we conduct 3000
epochs for the second step train. Our method and DMSC have a
limitation of full-batch training since it utilizes a self-expressive
layer as regularization. Therefore, it cannot handle large-scale data
efficiently. In our experiments, because Fashion MNIST dataset and
YTF dataset are large (all larger than 10,000), we randomly select
2000 samples on these two datasets for experiments. The batch size
is set as the number of sample size. All the other linear methods
are tested under the same environment by Matlab.

Since DCCA and DCCAE can only deal with two modalities,
we choose the best two modalities in our models according to
their performance as the two branches for DCCA and DCCAE.
After multi-modal feature learning, we concatenate the embedding
features in two branches to perform K-means. For DGCCA, we use
the shared representation to perform K-means directly. The pre-
trained network parameters of DCCA, DCCAE, and DGCCA are
also kept consistent with our models. For the DMJC algorithm, we
choose the same multi-modal convolutional encoder as our model
as the multi-modal branch of it.

4.1.4 Modal Network. When designing the network, for each con-
volutional auto-encoder, we set up a three-layer network. The size
of the first-layer convolution kernel is 4 × 4 × 10, and the step size
is 2. The size of the second-layer convolution kernel is 3 × 3 × 20,
and the step size is 1. The size of the third-layer convolution kernel
is 4 × 4 × 30, and the step size is 2. The deconvolution decoder
has a convolution kernel size opposite to that of the convolution
auto-encoder. Specifically, for the YTF dataset, the second layer
output is zero-padded to match the dimension.

4.2 Experimental Results

4.2.1 Comparison with Baselines. In order to evaluate the perfor-
mance of clustering algorithms, we adopt two metrics, i.e., clus-
tering accuracy (ACC) [10] and normalized mutual information
(NMI) [33], to measure its clustering performance by comparing it
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(a) Fashion MNIST (b) COIL20

(c) YTF (d) FRGC

Figure 2: The examples of four multi-modal datasets.

Table 2: The optimal clustering accuracy(ACC %) and the normalized mutual information (NMI %) on all the datasets. Best

results are highlighted in bold.

Methods
Fashion-MNIST COIL-20 FRGC YTF

ACC NMI ACC NMI ACC NMI ACC NMI

K-means [8] 51.27 49.99 57.49 73.22 23.62 27.12 56.01 75.23
DEC [32] 51.80 54.60 68.00 80.25 37.80 50.50 37.10 44.60
RMKMC [5] 53.32 52.87 60.97 74.93 23.52 25.85 57.21 74.56
BMVC [36] 45.36 38.05 34.31 40.33 41.51 45.92 28.13 38.28
LALMVC [31] 57.20 59.31 64.79 76.83 49.68 57.27 40.85 49.6
CSMSC [16] 62.45 61.80 62.08 73.15 52.15 66.23 54.65 73.55
DCCA [2] 52.74 53.82 55.76 64.91 22.91 24.75 45.19 60.35
DCCAE [26] 51.87 53.01 61.60 71.56 32.33 31.22 45.57 60.15
DGCCA [4] 56.28 57.04 54.01 62.40 23.76 24.53 47.26 61.38
DMJC [13] 61.41 63.41 72.99 81.58 44.07 59.79 61.15 77.40
DMSC [1] 59.55 65.07 74.10 86.82 72.83 80.96 62.80 80.16
StSNE 65.65 68.99 82.43 91.72 74.33 81.44 67.20 83.44

Figure 3: Visualization of the common latent representation

given by differentmethods with t-SNE on the COIL20 dataset.

with nine baseline methods on four datasets. The higher ACC/NMI
values indicate better clustering results.

Table 2 reports the clustering performances of all the compared
methods on four datasets. From the comparison results, we have
the following observations.

1) The proposed StSNE model consistently achieves the best
performance on four datasets in terms of both ACC and NMI, which
clearly supports the improved clustering performance brought by
the self-supervised t-SNE module among inter-modal and the self-
expressive layer of intra-modal data.

2) Our proposed model significantly outperforms the single-
modal clustering methods among most cases. For example, on the
FRGC dataset, the performances of K-means and DEC are only
23.62% and 37.80% by ACC, and 50.50% by NMI. This is because
the single-modal method does not consider the information of
other modalities and the clustering structure they learn cannot
fully reveal the data characteristics.

3) The ACC and NMI of DCCA are only 22.91% and 24.75% on
the FRGC dataset, which is the worst result. It is probably because
that DCCA cannot ensure the representation after the encoder
network still reflects the distribution of the original data. DCCAE
also obtains poor ACC and NMI results of 32.33% and 31.22% on

Poster Session 2 MM ’21, October 20–24, 2021, Virtual Event, China

1753



(a) (b) (c) (c)

Figure 4: Influence of parameter changes on clustering performance on Fashion-MNIST dataset.

Figure 5: Visualization of the learned subspace represen-

tation for a) DMSC and b) our Method on Fashion-MNIST

dataset.

Table 3: Ablation Study on Fashion-MNIST dataset in terms

of ACC (%) and NMI (%). Best results are highlighted in bold.

Methods ACC NMI

StSNE w/o 𝐿𝑅𝑒 52.35 59.74
StSNE w/o 𝐿𝑆𝑒 63.50 65.93
StSNE w/o 𝐿𝐴𝑇 64.15 65.68
StSNE (full model) 65.65 68.99

the FRGC dataset, which may be because it doesn’t consider the
relationships among intra-modal data.

4) Even though DMSC which is designed for multi-modal data
clustering performs better than other methods in most cases, our
proposed model also has an improvement over DMSC. It is because
that DMSC may not make full use of the information among the
inter-modal data. To sum up, the proposed StSNE has shown a
promising clustering performance compared with state-of-the-art
multi-modal clustering methods, since our approach not only con-
strains the intra-modal data similarity distribution through the
self-expression layer but also constrains the inter-modal data simi-
larity distribution by the self-supervised t-SNE module.

4.2.2 Ablation Study. In this subsection, we perform a detailed
ablation study on our model regarding different loss functions. The
overall objective function of StSNE consists of three parts: the recon-
struction loss 𝐿𝑅𝑒 , the self-expression loss 𝐿𝑆𝑒 , and self-supervised
t-SNE loss 𝐿𝐴𝑇 . On the Fashion-MNIST dataset, we remove each
loss function in turn and conduct the experiment. As shown in
Table 3, we can find that: 1) the self-supervised t-SNE module has

a certain impact on clustering performance, which constrains the
inter-modal data distribution more closely and maximizes the clus-
ter representation of each modal’s latent features to obtain a better
common subspace representation; 2) the self-expressive layer has a
significant effect on the proposed model, and the correlation among
intra-modal data play an important role in the improvement of clus-
tering performance; 3) the deep convolutional encoder-decoder has
the biggest impact on the proposed method, whose role is to ensure
the overall structure of the data and make the encoded data reliable.
The above observations indicate that all the three components in
our proposed StSNE model are designed reasonably.

4.2.3 Visualization. Figure 3 provides the t-SNE [17] visualization
of feature embeddings obtained by five competitive compared meth-
ods and our proposed method on the COIL20 dataset. In detail, we
apply t-SNE on the common-modal feature representations given
by different methods, respectively. As can be seen, our approach
exhibits a more clear and compact cluster structure than all the
other methods. As shown in Figure 5, in order to illustrate the role
of each module more clearly, we visualize the learned subspace rep-
resentation for each method. Figure 5(a) displays the visualization
result of DMSC, in which there are a lot of noise points resulting
in a low clustering performance. For our method, its clustering
performance significantly improves as shown in Figure 5(b) due
to that it can capture the correlation between multi-modal data to
learn a more consistent subspace representation.

4.2.4 Parameters Analysis. In our model, there are three regular-
ization parameters 𝜆1, 𝜆2 and 𝜆3. We use the method of controlling
variables to analyze the parameters. Firstly, we fix the regularization
parameter 𝜆3 of the adversarial loss and vary both the regularization
parameters 𝜆1 and 𝜆2of the self-expression loss and the reconstruc-
tion loss in the range of {0.01, 0.1, 1, 10, 100}. Then, we fix 𝜆1 and
vary 𝜆2 and 𝜆3 in the range of {0.01, 0.1, 1, 10, 100}. Since the strate-
gies of setting parameters are the same on all the four datasets, we
only show the effect of parameters on Fashion-MNIST dataset for
simplicity. From Figure 4, we can notice that 1) our method can
achieve the best ACC and NMI results on Fashion-MNIST dataset
when 𝜆1 = 100, 𝜆2 = 0.1 and 𝜆3 = 1; 2) our method is stable since
varying parameters has little influence on the clustering perfor-
mance.
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5 CONCLUSIONS

In this paper, we proposed a novel multi-modal clustering method,
namely Self-supervised t-SNE (StSNE) for multi-modal subspace
clustering. The proposed model derives a soft label feature of each
modal by a convolutional encoder, utilizes a self-supervised t-SNE
module to make the distribution of the learned soft label feature
close to the ideal distribution of data, employs a self-expressive
layer to recover a shared representation, and simultaneously per-
forms data reconstruction via a convolutional decoder. Thus, the
correlation distribution information of both the intra-modal data
and the inter-modal data is effectively captured. Consequently, the
recovered soft label feature that is shared by all modalities can well
reveal the intrinsic structure of multi-modal data. Experimental
results on four real-world multi-modal image datasets demonstrate
the superiority of our model over several state-of-the-art multi-
modal clustering methods.
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